La previsión de las técnicas de suavizado Este sitio es una parte de los laboratorios de JavaScript E-objetos para la toma de decisiones de aprendizaje. Otros JavaScript en esta serie se han clasificado en diferentes áreas de aplicaciones en la sección de menú de esta página. Una serie de tiempo es una secuencia de observaciones que están ordenados en el tiempo. Inherente a la recogida de los datos tomados con el tiempo es una cierta forma de la variación aleatoria. Existen métodos para reducir de cancelar el efecto debido a la variación aleatoria. Ampliamente técnicas utilizadas son suavizado. Estas técnicas, cuando se aplica correctamente, revela con mayor claridad las tendencias subyacentes. Introduzca la serie de tiempo de modo de fila en secuencia, comenzando desde la esquina superior izquierda, y el parámetro (s), a continuación, haga clic en el botón Calcular para obtener la previsión de un período hacia delante. Los espacios en blanco no se incluyen en los cálculos, pero son ceros. En la introducción de sus datos al pasar de una celda a otra en la matriz de datos utilizar la tecla Tab no de flecha o la tecla de entrada. Características de las series de tiempo, lo que podría ser revelada mediante el examen de su gráfica. con los valores pronosticados, y el comportamiento de los residuos, modelado condición de pronóstico. Medias Móviles: Las medias móviles se encuentran entre las técnicas más populares para el pre-procesamiento de series de tiempo. Se utilizan para filtrar el ruido blanco al azar de los datos, para hacer más suave la serie de tiempo o incluso para enfatizar ciertos componentes informativos contenidos en las series de tiempo. Suavizado exponencial: Este es un esquema muy popular para producir una serie de tiempo suavizado. Mientras que en los últimos Medias Móviles observaciones tienen el mismo peso, suavizado exponencial asigna exponencialmente decreciente pesos como la observación envejecen. En otras palabras, las recientes observaciones se dan relativamente más peso en la predicción de las observaciones de más edad. Doble suavizado exponencial es mejor en tendencias de manipulación. Triple suavizado exponencial es mejor en el manejo tendencias parábola. Un promedio móvil ponderado exponenentially con una constante de alisamiento. corresponde aproximadamente a una media móvil simple de longitud (es decir, período) n, donde a y n están relacionados por: a / (n1) 2 o N (2 - a) / a. Así, por ejemplo, una media móvil ponderada exponenentially con una constante de alisamiento igual a 0,1 correspondería aproximadamente a una media móvil de 19 días. Y un 40 días de media móvil simple correspondería aproximadamente a un promedio móvil ponderado exponencialmente con una constante de alisamiento igual a 0,04878. Holts lineal de suavizado exponencial: Supongamos que la serie temporal no es estacional, pero hace tendencia pantalla. Holts método estima tanto el nivel actual y la tendencia actual. Observe que la media móvil simple es el caso especial de suavizado exponencial estableciendo el período de la media móvil a la parte entera de (2-alfa) / Alpha. Para la mayoría de los datos de negocio un parámetro alfa menor que 0,40 es a menudo eficaz. Sin embargo, se puede realizar una búsqueda de rejilla del espacio de parámetros, con 0,1 a 0,9, con incrementos de 0,1. Entonces la mejor alfa tiene el más mínimo error absoluto medio (Ma ERROR). Cómo comparar varios métodos de suavizado: Aunque hay indicadores numéricos para evaluar la precisión de la técnica de pronóstico, el enfoque más ampliamente es en el uso de la comparación visual de varias previsiones para evaluar su precisión y elegir entre los distintos métodos de pronóstico. En este enfoque, se debe trazar (utilizando, por ejemplo, Excel) en el mismo gráfico los valores originales de una variable de series de tiempo y los valores predichos a partir de varios métodos de pronóstico diferentes, facilitando así una comparación visual. Es posible que como el uso de los pronósticos pasados por las técnicas de suavizado JavaScript para obtener los valores de pronóstico últimos basados en técnicas que utilizan un solo parámetro sólo suavizado. Holt, y Winters métodos utilizan dos y tres parámetros, respectivamente, por lo que no es una tarea fácil para seleccionar el óptimo, o incluso cerca de los valores óptimos por ensayo y error para los parámetros. El suavizado exponencial simple enfatiza la perspectiva de corto alcance que establece el nivel de la última observación y se basa en la condición de que no existe una tendencia. La regresión lineal, que se ajusta a una recta de mínimos cuadrados de los datos históricos (o datos históricos transformados), representa el rango de longitud, que está condicionada a que la tendencia básica. Holts suavizado exponencial lineal captura información acerca de la reciente tendencia. Los parámetros en el modelo de Holt es los niveles de parámetros que se deben disminuir cuando la cantidad de variación de datos es grande, y las tendencias-parámetro debe aumentarse si la reciente dirección de la tendencia es apoyada por la causal algunos factores. La predicción a corto plazo: Observe que cada JavaScript en esta página ofrece un pronóstico de un paso por delante. Para obtener una previsión de dos paso por delante. sólo tiene que añadir el valor pronosticado hasta el final de ustedes series temporales de datos y, a continuación, haga clic en el mismo botón Calcular. Puede repetir este proceso un par de veces con el fin de obtener el necesario a corto plazo de series de tiempo forecasts. A es una secuencia de observaciones de una variable aleatoria periódica. Ejemplos de ello son la demanda mensual de un producto, la matrícula de primer año anual de un departamento de la universidad y de los caudales diarios en un río. series de tiempo son importantes para la investigación de operaciones, ya que a menudo son el motor de los modelos de decisión. Un modelo de inventario requiere estimaciones de futuras demandas, una programación de curso y el modelo de dotación de personal para un departamento universitario requiere estimaciones de los flujos futuros de los estudiantes, y un modelo para proporcionar advertencias a la población en una cuenca hidrográfica requiere estimaciones de caudales de los ríos para el futuro inmediato. análisis de series temporales proporciona herramientas para seleccionar un modelo que describe la serie de tiempo y utilizar el modelo para predecir eventos futuros. Modelado de la serie de tiempo es un problema estadístico porque los datos observados se utiliza en los procedimientos de cálculo para estimar los coeficientes de un supuesto modelo. Modelos asumen que las observaciones varían al azar sobre un valor medio subyacente que es una función del tiempo. En estas páginas nos limitamos nuestra atención a la utilización de los datos históricos de series de tiempo para estimar un modelo dependiente del tiempo. Los métodos son apropiados para la previsión automática término, a falta de información de uso frecuente en las causas subyacentes de la variación en el tiempo no cambian notablemente en el tiempo. En la práctica, las predicciones obtenidas por estos métodos son modificadas posteriormente por los analistas humanos que incorporen información no está disponible a partir de los datos históricos. Nuestro propósito principal de esta sección es presentar las ecuaciones para los cuatro métodos de pronóstico utilizados en la predicción de complemento: media móvil, suavizado exponencial, regresión y suavizado exponencial doble. Estos son los llamados métodos de suavizado. Los métodos no considerados incluyen la predicción cualitativa, regresión múltiple, y los métodos autorregresivos (ARIMA). Los interesados en la cobertura más extensa debe visitar el sitio Principios de predicción o leer uno de los varios libros excelentes sobre el tema. Se utilizó la predicción de libro. por Makridakis, Wheelwright y McGee, John Wiley amp; Sons, 1983. Para utilizar los ejemplos de libro de Excel, debe tener la predicción de complemento instalado. Elija el comando Volver a vincular para establecer los vínculos con el complemento. Esta página describe los modelos utilizados para la predicción simple y la notación utilizada para el análisis. Este método de pronóstico más simple es la previsión media móvil. El método simplemente promedios de los últimos m observaciones. Es útil para series de tiempo con una media que cambia lentamente. Este método considera todo el pasado en su pronóstico, pero pesa la experiencia reciente en mayor medida que menos reciente. Los cálculos son sencillos porque sólo la estimación del periodo anterior y los datos actuales determinan la nueva estimación. El método es útil para series de tiempo con una media que cambia lentamente. El método de promedio móvil no responde bien a una serie de tiempo que aumenta o disminuye con el tiempo. Aquí incluimos un término de tendencia lineal en el modelo. El método de regresión se aproxima al modelo mediante la construcción de una ecuación lineal que proporciona los ajuste de mínimos cuadrados a la última m observations. In practicar la media móvil proporcionará una buena estimación de la media de la serie de tiempo si la media es constante o lentamente cambiante. En el caso de una media constante, el mayor valor de m dará los mejores estimaciones de la media subyacente. Un periodo de observación más largo tendrá un promedio de los efectos de la variabilidad. El objeto de proporcionar un m más pequeña es permitir la previsión de responder a un cambio en el proceso subyacente. Para ilustrar esto, se propone un conjunto de datos que incorpora cambios en la media subyacente de la serie temporal. La figura muestra la serie de tiempo utilizado para la ilustración, junto con la demanda media de los que se generó la serie. La media comienza como una constante en 10. A partir de tiempo 21, se incrementa en una unidad en cada período hasta que se alcanza el valor de 20 en el momento 30. Entonces se hace constante de nuevo. Los datos se simula mediante la adición a la media, un ruido aleatorio de una distribución normal con media cero y desviación estándar 3. Los resultados de la simulación se han redondeado al entero más cercano. La tabla muestra las observaciones simuladas utilizadas para el ejemplo. Cuando usamos la tabla, hay que recordar que en un momento dado, sólo se conocen los datos del pasado. Las estimaciones del parámetro del modelo, para tres valores diferentes de m se muestran junto con la media de la serie de tiempo en la siguiente figura. La figura muestra la estimación de la media móvil de la media en cada tiempo y no el pronóstico. Las previsiones cambiarían las curvas de media móvil hacia la derecha por puntos. Una conclusión es inmediatamente evidente a partir de la figura. Para las tres estimaciones de la media móvil va a la zaga de la tendencia lineal, con el retraso aumenta con m. El retraso es la distancia entre el modelo y la estimación de la dimensión de tiempo. Debido al retraso, el promedio móvil subestima las observaciones como la media va en aumento. El sesgo del estimador es la diferencia en un momento específico en el valor medio del modelo y el valor medio predicho por la media móvil. El sesgo cuando la media está aumentando es negativo. Para la media de la disminución, el sesgo es positivo. El retraso en el tiempo y el sesgo introducido en la estimación son funciones de m. Cuanto mayor sea el valor de m. cuanto mayor sea la magnitud del retardo y el sesgo. Para una serie creciente de forma continua con una tendencia. los valores de retardo y el sesgo del estimador de la media se da en las siguientes ecuaciones. Las curvas ejemplo, no se ajustan a estas ecuaciones porque el modelo de ejemplo no está aumentando de forma continua, sino que comienza como una constante, se convierte en una tendencia y luego se vuelve constante de nuevo. También las curvas de ejemplo se ven afectados por el ruido. El pronóstico promedio móvil de periodos en el futuro está representado por desplazamiento de las curvas hacia la derecha. El retardo y el sesgo aumentan proporcionalmente. Las ecuaciones a continuación indican el retardo y el sesgo de un períodos de pronóstico en el futuro si se compara con los parámetros del modelo. Una vez más, estas fórmulas son para una serie de tiempo con una tendencia lineal constante. No debemos ser sorprendidos por este resultado. El estimador de la media móvil se basa en el supuesto de una media constante, y el ejemplo tiene una tendencia lineal en la media durante una parte del período de estudio. Desde la serie en tiempo real raramente exactamente obedecer a los supuestos de cualquier modelo, debemos estar preparados para tales resultados. También podemos concluir a partir de la figura que la variabilidad del ruido tiene el efecto más grande para los pequeños m. La estimación es mucho más volátil para la media móvil de 5 de la media móvil de 20. Tenemos los deseos conflictivos para incrementar m para reducir el efecto de la variabilidad debido al ruido y lograr una reducción m para hacer el pronóstico más sensible a los cambios en la media. El error es la diferencia entre los datos reales y el valor pronosticado. Si la serie de tiempo es verdaderamente un valor constante el valor esperado del error es cero y la varianza del error se compone de un término que es una función de y un segundo término que es la varianza del ruido,. El primer término es la varianza de la media estimada con una muestra de m observaciones, asumiendo los datos proceden de una población con una media constante. Este término se minimiza haciendo m lo más grande posible. Una gran m hace que el pronóstico no responde a un cambio en la serie temporal subyacente. Para hacer la previsión sensible a los cambios, queremos m tan pequeño como sea posible (1), pero esto aumenta la varianza de error. previsión práctica requiere un valor intermedio. Pronóstico con Excel El pronóstico de complemento implementa las fórmulas de media móvil. El siguiente ejemplo muestra el análisis proporcionado por el complemento para los datos de la muestra en la columna B. Las primeras 10 observaciones están indexados -9 a 0. En comparación con la tabla anterior, los índices de época se desplazan -10. Los primeros diez observaciones proporcionan los valores de inicio para la estimación y se utilizan para calcular el promedio móvil para el periodo 0. El (10) MA columna (C) muestra los promedios móviles calculados. El parámetro m de media móvil se encuentra en la celda C3. La Fore (1) columna (D) muestra un pronóstico para un período en el futuro. El intervalo de pronóstico está en la celda D3. Cuando el intervalo de pronóstico se cambia a un mayor número de los números en la columna de la Fore se desplazan hacia abajo. La columna Err (1) (E) muestra la diferencia entre la observación y el pronóstico. Por ejemplo, la observación en el instante 1 es 6. El valor pronosticado a partir de la media móvil en el tiempo 0 es 11,1. El error es entonces -5.1. La desviación estándar y media desviación media (MAD) se calculan en células E6 y E7 respectively. Exponential Media Móvil - EMA Carga del reproductor. ROMPIENDO Media Móvil Exponencial - EMA El 12 y 26 días EMA son los promedios más populares a corto plazo, y que se utilizan para crear indicadores como la divergencia media móvil de convergencia (MACD) y el oscilador de precios porcentaje (PPO). En general, el de 50 y 200 días EMA se utilizan como señales de tendencias a largo plazo. Los comerciantes que emplean el análisis técnico se encuentran las medias móviles muy útil e interesante cuando se aplica correctamente, pero crear el caos cuando se utiliza incorrectamente o mal interpretado. Todos los promedios móviles de uso común en el análisis técnico son, por su propia naturaleza, indicadores de retraso. En consecuencia, las conclusiones extraídas de la aplicación de una media móvil a un gráfico de mercado en particular deben ser para confirmar un movimiento del mercado o para indicar su fuerza. Muy a menudo, en el momento en una línea de indicador de media móvil ha hecho un cambio para reflejar un cambio significativo en el mercado, el punto óptimo de entrada en el mercado ya ha pasado. Un EMA sirve para aliviar este dilema en cierta medida. Debido a que el cálculo de la EMA pone más peso en los últimos datos, se abraza a la acción del precio un poco más fuerte y por lo tanto reacciona más rápido. Esto es deseable cuando un EMA se utiliza para derivar una señal de entrada de comercio. La interpretación de la EMA Al igual que todos los indicadores de media móvil, que son mucho más adecuados para los mercados de tendencias. Cuando el mercado está en una tendencia alcista fuerte y sostenida. la línea del indicador EMA también mostrará una tendencia alcista y viceversa para una tendencia a la baja. Un comerciante vigilantes no sólo prestar atención a la dirección de la línea EMA, sino también la relación de la velocidad de cambio de un bar a otro. Por ejemplo, ya que la acción del precio de una fuerte tendencia alcista comienza a aplanarse y revertir, la tasa de cambio EMA de una barra a la siguiente comenzará a disminuir hasta el momento en que la línea indicadora se aplana y la tasa de cambio es cero. Debido al efecto de retraso, en este punto, o incluso unos pocos compases antes, la acción del precio ya debería haber revertido. Por lo tanto, se deduce que la observación de una disminución constante de la tasa de cambio de la EMA podría sí mismo ser utilizado como un indicador de que podrían contrarrestar aún más el dilema causado por el efecto de retraso de medias móviles. Usos comunes de la EMA EMA se utilizan comúnmente en conjunción con otros indicadores significativos para confirmar los movimientos del mercado y para medir su validez. Para los comerciantes que negocian intradía y los mercados de rápido movimiento, la EMA es más aplicable. Muy a menudo los comerciantes utilizan EMA para determinar un sesgo de operación. Por ejemplo, si un EMA en un gráfico diario muestra una fuerte tendencia al alza, una estrategia de los operadores intradía puede ser para el comercio sólo desde el lado largo intradía chart. Exponential Smoothing Explicación. copia de Autor. El contenido de InventoryOps está protegido por copyright y no está disponible para su republicación. Cuando las personas encuentran por primera vez el término suavizado exponencial se puede pensar que suena como un infierno de una gran cantidad de suavizado. cualquiera que sea suavizado es. A continuación, empezar a vislumbrar un cálculo matemático complicado que probablemente requiere un grado en matemáticas para entender, y la esperanza no es una función integrada en Excel disponible si es que alguna vez tienen que hacerlo. La realidad de suavizado exponencial es mucho menos dramático y mucho menos traumática. La verdad es, suavizado exponencial es un cálculo muy simple que ejecutan una tarea bastante simple. Sólo tiene un nombre complicado porque lo que ocurre técnicamente como resultado de este cálculo simple es en realidad un poco complicado. Para entender suavizado exponencial, es útil comenzar con el concepto general de alisado y un par de otros métodos comunes usados para lograr suavizado. Lo que se alisar suavizado es un proceso estadístico muy común. De hecho, nos encontramos con regularidad datos suavizados en diversas formas en nuestra vida día a día. Cualquier vez que utilice un promedio para describir algo, si está utilizando una serie suavizada. Si usted piensa acerca de por qué se utiliza un promedio para describir algo, pronto entenderá el concepto de suavizado. Por ejemplo, que acabamos de experimentar el invierno más cálido registrado. ¿Cómo somos capaces de cuantificar este Bien empezamos con conjuntos de datos de las altas y bajas temperaturas diarias durante el período que llamamos invierno para cada año en la historia registrada. Pero eso nos deja con un montón de números que saltan todo un poco (no es como todos los días este invierno estaba más caliente que los días correspondientes de todos los años anteriores). Necesitamos un número que elimina todo esto que salta alrededor de los datos para que podamos comparar más fácilmente un invierno a otro. Extracción del salto en torno a los datos se denomina suavizado, y en este caso sólo podemos utilizar un promedio simple de lograr el alisado. En previsión de la demanda, que utilizamos suavizado para eliminar la variación aleatoria (ruido) de nuestra demanda histórica. Esto nos permite identificar mejor los patrones de demanda (principalmente de tendencia y estacionalidad) y los niveles de demanda que pueden ser utilizados para estimar la demanda futura. El ruido de la demanda es el mismo concepto que el salto diariamente alrededor de los datos de temperatura. No es sorprendente que la forma en que las personas más comunes eliminar el ruido de la historia de la demanda es utilizar un averageor sencilla, más concretamente, una media móvil. Una media móvil sólo utiliza un número predefinido de períodos para calcular la media, y esos períodos mueva a medida que pasa el tiempo. Por ejemplo, si estoy usando una media móvil de 4 meses, y hoy en día es el 1 de mayo de Im usando un promedio de demanda que se produjo en enero, febrero, marzo y abril. El 1 de junio, Me va a utilizar la demanda de febrero, marzo, abril y mayo. media móvil ponderada. Cuando se utiliza un promedio estamos aplicando la misma importancia (peso) para cada valor del conjunto de datos. En la media móvil de 4 meses, cada mes representó 25 de la media móvil. Cuando se utiliza la historia para proyectar la demanda futura demanda (y en especial la tendencia futura), su lógica para llegar a la conclusión de que le gustaría historia más reciente para tener un mayor impacto en el pronóstico. Podemos adaptar nuestro cálculo de promedios móviles para aplicar diferentes pesos a cada período para obtener los resultados deseados. Nos expresar estos pesos como porcentajes, y el total de todos los pesos para todos los períodos que añadir hasta 100. Por lo tanto, si decidimos que queremos aplicar 35 como el peso para el período próximo en nuestro 4 meses de media móvil ponderada, podemos restar 35 de 100 a encontrar tenemos 65 restante para dividir en los otros 3 períodos. Por ejemplo, podemos terminar con una ponderación de 15, 20, 30 y 35, respectivamente, para los 4 meses (15 20 30 35 100). Desvanecimiento exponencial. Si volvemos a la idea de aplicar un peso al período más reciente (como 35 en el ejemplo anterior) y difundir el peso restante (calculado restando el más reciente de peso período de 35 de 100 para obtener 65), tenemos los bloques de construcción básicos para nuestro cálculo de suavizado exponencial. La entrada de control del cálculo de suavizado exponencial es conocido como el factor de alisamiento (también llamado la constante de suavizado). En esencia, representa la ponderación aplicada a la más reciente solicitud de períodos. Por lo tanto, cuando se utilizó como el 35 de ponderación para el período más reciente en el cálculo de la media móvil ponderada, también podríamos optar por utilizar 35 como el factor de suavizado en nuestro cálculo de suavizado exponencial para obtener un efecto similar. La diferencia con el cálculo de suavizado exponencial es que en vez de tener que también calcular la cantidad de peso que se aplica a cada período anterior, el factor de suavizado se utiliza para hacer automáticamente que. Así que aquí viene la parte exponencial. Si usamos 35 como el factor de alisado, la ponderación de los más recientes períodos demanda será 35. La ponderación de la siguiente demanda períodos más reciente (el período anterior a la más reciente) será 65 de 35 (65 proviene de restar 35 de 100). Esto equivale a 22.75 coeficiente corrector para dicho período, si se hacen las cuentas. El siguiente más reciente demanda períodos será 65 de 65 de 35, lo que equivale a 14.79. El período antes de que se ponderará el 65 de 65 de 65 de 35, lo que equivale a 9,61, y así sucesivamente. Y esto va en la parte posterior a través de todos sus períodos anteriores de todo el camino de vuelta al principio del tiempo (o el punto en el que se inició el uso de suavizado exponencial para ese caso particular). Usted está pensando probablemente eso es vista como una gran cantidad de matemáticas. Pero la belleza del cálculo de suavizado exponencial es que en lugar de tener que volver a calcular el uno contra el período anterior cada vez que reciba una nueva demanda períodos, sólo tiene que usar la salida del cálculo de suavizado exponencial del período anterior para representar a todos los periodos anteriores. ¿Está usted confundido pero aún así deberá tener más sentido cuando nos fijamos en el cálculo real Normalmente nos referimos a la salida del cálculo de suavizado exponencial como el próximo periodo de previsión. En realidad, la previsión definitiva necesita un poco más de trabajo, pero a los efectos de este cálculo específico, nos referiremos a él como el pronóstico. El cálculo de suavizado exponencial es el siguiente: los períodos más demanda reciente multiplican por el factor de alisamiento. PLUS Los períodos más recientes Pronóstico multiplican por (uno menos el factor de suavizado). D períodos más recientes exigen S el factor de suavizado se representa en forma decimal (por lo que 35 se representaría como 0,35). F los períodos más recientes de pronóstico (el resultado del cálculo de suavizado del período anterior). O (suponiendo un factor de suavizado de 0,35) (0,35 D) (F 0,65) Es imposible encontrar mucho más simple que eso. Como se puede ver, todo lo que necesitamos para las entradas de datos aquí son las más recientes la demanda y los períodos más recientes períodos de pronóstico. Aplicamos el factor de suavizado (ponderación) para los períodos más recientes la demanda de la misma manera que lo haría en el cálculo de la media móvil ponderada. A continuación, aplicar la ponderación restante (1 menos el factor de suavizado) para los más recientes períodos de pronóstico. Desde las épocas más recientes pronóstico fue creado en base a la demanda anterior períodos y los períodos anteriores pronosticado, que estaba basado en la demanda para el período antes de eso y la previsión para el período antes de eso, que estaba basado en la demanda para el período anterior eso y la previsión para el período antes de eso, que se basaba en el período antes de eso. así, se puede ver cómo todos los anteriores períodos de demanda están representados en el cálculo sin tener que ir hacia atrás y volver a calcular nada. Y eso es lo que llevó a la popularidad inicial de suavizado exponencial. Se suponía, ya que hizo un mejor trabajo de alisado que el promedio móvil ponderado, era porque era más fácil de calcular en un programa de ordenador. Y, debido a que aún no ha necesita pensar acerca de lo que la ponderación que se prevean períodos anteriores o el número de períodos anteriores de utilizar, como lo haría en la media móvil ponderada. Y, ya que sólo sonaba más frío que el promedio móvil ponderado. De hecho, se podría argumentar que la media móvil ponderada proporciona una mayor flexibilidad, ya que tiene más control sobre el peso de los períodos anteriores. La realidad es que cualquiera de ellos puede proporcionar resultados respetables, ¿por qué no ir con un sonido más fácil y más fresco. Suavizado exponencial en Excel Vamos a ver cómo esta realidad se vería en una hoja de cálculo con los datos reales. copia de Autor. El contenido de InventoryOps está protegido por copyright y no está disponible para su republicación. En la Figura 1A, tenemos una hoja de cálculo Excel con 11 semanas de la demanda, y una previsión de suavizado exponencial calculada a partir de esa demanda. He utilizado un factor de suavizado de 25 (0,25 en la celda C1). La celda activa actual es la célula M4 que contiene el pronóstico para la semana 12. Se puede ver en la barra de fórmulas, la fórmula es (L3C1) (L4 (1-C1)). Así que las únicas entradas directas a este cálculo son los períodos de demanda anterior (Cell L3), los períodos anteriores previsiones (Cell L4), y el factor de suavizado (celda C1, se muestra como referencia la celda C1 absoluta). Cuando empezamos un cálculo de suavizado exponencial, tenemos que conectar manualmente el valor de la 1ª de previsión. Así que la celda B4, en lugar de una fórmula, que acaba de escribir en la demanda de ese mismo período que el pronóstico. En la celda C4 tenemos nuestra 1ª cálculo de suavizado exponencial (B3C1) (B4 (1-C1)). A continuación, podemos copiar la celda C4 y pegarla en las celdas D4 a M4 para llenar el resto de nuestras células de pronóstico. Ahora puede hacer doble clic en cualquier celda de pronóstico para ver que se basa en la celda de períodos anteriores y pronosticar los períodos anteriores exigen celular. Así cada cálculo de suavizado exponencial posterior hereda la salida del cálculo de suavizado exponencial anterior. Ése es cómo cada demanda períodos anterior está representado en el cálculo más reciente periodos a pesar de que el cálculo no hace referencia directamente esos períodos anteriores. Si usted desea conseguir la suposición, puede utilizar la función Sobresale precedentes traza. Para ello, haga clic en la célula M4, a continuación, en la barra de herramientas de la cinta (Excel 2007 o 2010), en la ficha Fórmulas, haga clic en Rastrear precedentes. Se basará líneas de conexión con el nivel 1 de los precedentes, pero si sigues haciendo clic precedentes rastrearlo dibujará las líneas de conexión a todos los periodos anteriores a mostrar las relaciones heredadas. Ahora vamos a ver lo suavizado exponencial hizo por nosotros. Figura 1B muestra un gráfico de líneas de nuestra demanda y las previsiones. Usted caso averigua cómo la previsión alisada exponencialmente elimina la mayor parte de la jaggedness (los saltos alrededor) de la demanda semanal, pero se las arregla para seguir lo que parece ser una tendencia al alza de la demanda. Youll también se dio cuenta de que la línea de pronóstico suavizado tiende a ser más baja que la línea de la demanda. Esto se conoce como tendencia lag y es un efecto secundario del proceso de suavizado. Cualquier vez que utilice suavizado cuando una tendencia está presente en sus tránsitos va a la zaga de la tendencia. Esto es cierto para cualquier técnica de alisado. De hecho, si tuviéramos que seguir esta hoja de cálculo y empezar a introducir los números más bajos de demanda (que hacen una tendencia a la baja) que se vería la caída de la línea de la demanda, y la línea de tendencia de movimiento por encima de ella antes de comenzar a seguir la tendencia a la baja. Es por eso que he mencionado anteriormente la salida del cálculo de suavizado exponencial que llamamos un pronóstico, todavía necesita un poco más de trabajo. Hay mucho más que la previsión de sólo suavizar los baches de la demanda. Tenemos que hacer ajustes adicionales para cosas como el retraso de tendencia, estacionalidad, eventos conocidos que pueden afectar a la demanda, etc, pero todo lo que está más allá del alcance de este artículo. Es probable que también encontrarse con términos como suavizado exponencial doble y triple de suavizado exponencial. Estos términos son un poco engañoso ya que no se vuelva a alisar la demanda varias veces (lo que podría si lo desea, pero eso no es el punto aquí). Estos términos representan el uso de suavizado exponencial en los elementos adicionales de la previsión. Así que con suavizamiento exponencial simple, que está suavizando la demanda de base, pero con doble suavizado exponencial que está suavizando la demanda de base más la tendencia, y con el triple de suavizado exponencial que está suavizando la demanda de base más la tendencia más la estacionalidad. La otra pregunta más frecuente sobre el suavizado exponencial es donde hago para que mi factor de alisamiento No hay una respuesta mágica aquí, tiene que probar distintos factores de alisamiento con sus datos de demanda para ver lo que obtiene los mejores resultados. Hay cálculos que pueden establecer de forma automática (y cambio), el factor de suavizado. Estos caen bajo el término de suavizado de adaptación, pero hay que tener cuidado con ellos. Simplemente no hay respuesta perfecta y no se debe aplicar ciegamente cualquier cálculo sin pruebas a fondo y desarrollar un conocimiento profundo de lo que hace que el cálculo. También debe ejecutar escenarios hipotéticos para ver cómo reaccionan estos cálculos para exigir cambios que pueden no existir actualmente en la demanda de datos que está utilizando para la prueba. El ejemplo de datos utilicé anteriormente es un muy buen ejemplo de una situación en la que realmente necesita para poner a prueba algunos otros escenarios. Ese ejemplo de datos en particular muestra una tendencia al alza un poco consistente. Muchas grandes empresas con software de predicción muy caro pusieron en un gran problema en el pasado no tan lejano, cuando sus ajustes de software que se han pellizcado para una economía en crecimiento aún no ha reaccionan bien cuando la economía comenzó un estancamiento o contracción. Este tipo de cosas suceden cuando usted no entiende lo que sus cálculos (software) está haciendo realidad. Si se entiende su sistema de previsión, habrían sabido que necesitaban para saltar y cambiar algo cuando hubo cambios dramáticos repentinos en sus negocios. Así que ahí lo tienen los fundamentos de suavizado exponencial explicó. ¿Quieres saber más sobre el uso de suavizado exponencial en una estimación real, echa un vistazo a mi libro explicaba la gestión de stocks. copia de Autor. El contenido de InventoryOps está protegido por copyright y no está disponible para su republicación. David Piasecki. es propietario / operador de Inventario de Operaciones Consulting LLC. una empresa de consultoría que proporciona servicios relacionados con la gestión de inventarios, manejo de materiales y las operaciones de almacén. Tiene más de 25 años de experiencia en la gestión de operaciones y se puede llegar a través de su página web (www. inventoryops), donde se mantiene la información adicional pertinente. Mi negocio
No comments:
Post a Comment